留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rh/CeO2催化剂中Rh负载量对CO2加氢生成甲醇及乙醇产物选择性的影响的研究

郑珂 刘冰 胥月兵 刘小浩

郑珂, 刘冰, 胥月兵, 刘小浩. Rh/CeO2催化剂中Rh负载量对CO2加氢生成甲醇及乙醇产物选择性的影响的研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60450-0
引用本文: 郑珂, 刘冰, 胥月兵, 刘小浩. Rh/CeO2催化剂中Rh负载量对CO2加氢生成甲醇及乙醇产物选择性的影响的研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60450-0
ZHENG Ke, LIU Bing, XU Yuebing, LIU Xiaohao. Study on the effects of Rh loading on the selectivity to methanol and ethanol in CO2 hydrogenation reaction over Rh/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60450-0
Citation: ZHENG Ke, LIU Bing, XU Yuebing, LIU Xiaohao. Study on the effects of Rh loading on the selectivity to methanol and ethanol in CO2 hydrogenation reaction over Rh/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60450-0

Rh/CeO2催化剂中Rh负载量对CO2加氢生成甲醇及乙醇产物选择性的影响的研究

doi: 10.1016/S1872-5813(24)60450-0
基金项目: 国家重点研发计划(2023YFB4103201)国家自然科学基金 (22379053)资助
详细信息
    通讯作者:

    Tel: 13506186720, Fax: (+086)510-8591-7763, E-mail: liuxh@jiangnan.edu.cn

  • 中图分类号: O643.38

Study on the effects of Rh loading on the selectivity to methanol and ethanol in CO2 hydrogenation reaction over Rh/CeO2 catalyst

Funds: The project was supported by the National Key Research and Development program of China (2023YFB4103201) and the National Natural Science Foundation of China (22379053).
  • 摘要: 将二氧化碳(CO2)捕获并通过加氢转化为醇类等高价值的化学品是减少CO2排放并实现循环经济的重要途径之一。本文研究了Rh负载量为0.1~2.0%的Rh/CeO2催化剂在CO2加氢反应中的催化性能,并结合XRD、Raman、H2-TPR、CO2-TPD、CO-DRIFTS和XPS等表征方法,揭示了Rh负载量对催化剂CO2加氢活性和产物选择性的影响。结果表明,当反应压力为3.0 MPa、反应温度为250 ℃时,0.1% Rh/CeO2催化剂上CO2加氢的产物以乙醇为主;随着Rh含量的增加,CO2转化率增加,乙醇选择性降低,当Rh负载量为2.0%时,产物以甲醇为主。不同Rh负载量催化剂产物选择性的差异与催化剂中Rh的存在形式和电子性质有关。原子分散的Rh+有利于稳定CO*与CH3*进行C-C偶联形成乙醇,而金属态的Rh团簇则有利于CO*加氢形成甲醇。
  • 图  1  不同催化剂的XRD谱图

    Figure  1  XRD patterns of different catalysts

    图  2  不同催化剂的Raman图

    Figure  2  Raman spectra of different catalysts

    图  3  不同催化剂的H2-TPR曲线

    Figure  3  H2-TPR profiles of different catalysts

    图  4  不同催化剂的CO2-TPD曲线图

    Figure  4  CO2-TPD profiles of different catalysts

    图  5  不同催化剂的原位CO吸附漫反射红外光谱图

    Figure  5  In situ CO-DRIFT spectra of various catalysts

    图  6  不同还原后催化剂的Ce 3d(a)、O 1s(b)和Rh 3d(c) XPS图谱

    Figure  6  Ce 3d (a), O 1s (b) and Rh 3d (c) XPS spectrum of of different reduced catalysts

    图  7  不同催化剂上CO2加氢反应催化性能(a)和甲醇与乙醇产率变化(b)

    Figure  7  CO2 hydrogenation reaction performance (a) and methanol and ethanol yield plots (b) over different catalysts

    图  8  0.1% Rh/CeO2催化剂上乙醇(a)和2.0% Rh/CeO2催化剂上甲醇(b)的时空产率与文献报道的催化剂的比较

    Figure  8  Comparison of the space-time yield of ethanol over 0.1% Rh/CeO2 (a) and methanol over 2.0% Rh/CeO2 (b) obtained in this work with other catalysts reported by literatures

    图  9  不同模型上CO加氢(a)和C-C偶联能力(b)对比

    Figure  9  Comparison of CO hydrogenation (a) and C-C coupling ability (b) on different models

    图  10  0.1% Rh/CeO2(a)和2.0% Rh/CeO2(b)催化剂的循环评价实验

    Figure  10  Recycled testing of 0.1% Rh/CeO2 (a) and 2.0% Rh/CeO2 (b) catalysts for reaction of 5 hours at five runs

    表  1  催化剂中的Rh含量

    Table  1  Rh contents in the catalysts

    EntryCatalystRh content/wt%
    10.1% Rh/CeO20.14
    20.5% Rh/CeO20.55
    32.0% Rh/CeO21.92
    下载: 导出CSV

    表  2  由XPS计算出催化剂表面组分的含量

    Table  2  Component on the surface of the studied samples calculated from XPS results

    Catalyst Ce3+/(Ce3++Ce4+) (%) Oads/(Oads+Olat) (%)
    0.1% Rh/CeO2 17.3 28.6
    0.5% Rh/CeO2 21.4 30.2
    2.0% Rh/CeO2 23.6 31.7
    下载: 导出CSV
  • [1] LIU B, GENG S, ZHENG J, et al. Unravelling the new roles of Na and Mn promoter in CO2 hydrogenation over Fe3O4-based catalysts for enhanced selectivity to light α-olefins[J]. ChemCatChem,2018,10(20):4718−4732. doi: 10.1002/cctc.201800782
    [2] 李梦婷, 段胜阳, 陈泓坤, 等. 二氧化碳加氢制备低碳烯烃用铁基催化剂的研究进展 [J]. 辽宁化工, 2023, 52(9): 1359-1361.

    LI Mengting , DUAN Shengyang , CHEN Hongkun, et al. Research progress of iron-based catalysts for CO2 hydrogenation to low-carbon olefins [J]. Liaoning Chem Ind, 2023, 52(9): 1359-1361.)
    [3] PENG G, SIBENER S J, SCHATZ G C, et al. CO2 hydrogenation to formic acid on Ni(111)[J]. J Phys Chem C,2012,116(4):3001−3006. doi: 10.1021/jp210408x
    [4] XU Y, SHI C, LIU B, et al. Selective production of aromatics from CO2[J]. Catal Sci Technol,2019,9(3):593−610. doi: 10.1039/C8CY02024H
    [5] NI Y, CHEN Z, FU Y, et al. Selective conversion of CO2 and H2 into aromatics[J]. Nat Commun,2018,9(1):3457. doi: 10.1038/s41467-018-05880-4
    [6] LIU C, KANG J, HUANG Z-Q, et al. Gallium nitride catalyzed the direct hydrogenation of carbon dioxide to dimethyl ether as primary product[J]. Nat Commun,2021,12(1):2305. doi: 10.1038/s41467-021-22568-4
    [7] CHEN J, ZHANG D, LIU B, et al. Photoinduced precise synthesis of diatomic Ir1Pd1-In2O3 for CO2 hydrogenation to methanol via angstrom-scale-distance dependent synergistic catalysis [J]. Angew Chem Int Ed, 2024, e202401168.
    [8] JIANG F, WANG S, LIU B, et al. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 Catalysts[J]. ACS Catal,2020,10(19):11493−11509. doi: 10.1021/acscatal.0c03324
    [9] 庄会栋, 白绍芬, 刘欣梅, 等. Cu/ZrO2催化剂的结构及其CO2加氢合成甲醇催化反应性能[J]. 燃料化学学报,2010,038(04):462−467. doi: 10.1016/S1872-5813(10)60041-2

    ZHUANG Huidong, BAI Shaofen, LIU Xinmei, et al. Structure and performance of Cu/ZrO2 catalyst for the synthesis of methanol from CO2 hydrogenation[J]. J Fuel Chem Technol,2010,038(04):462−467. doi: 10.1016/S1872-5813(10)60041-2
    [10] CHEN J, ZHA Y, LIU B, et al. Rationally designed water enriched nano reactor for stable CO2 hydrogenation with near 100% ethanol selectivity over diatomic palladium active sites[J]. ACS Catal,2023,13(10):7110−7121. doi: 10.1021/acscatal.3c00586
    [11] 张力婕, 韩爱国. CO2加氢制乙醇反应机理及催化剂研究进展[J]. 低碳化学与化工,2022,47(3):8−17.

    ZHANG Lijie, HAN Aiguo. Research progress on reaction mechanism and catalyst of CO2 hydrogenation to ethanol[J]. Nat Gas Chem Ind,2022,47(3):8−17.
    [12] MA K, ZHAO S, DOU M, et al. Enhancing the stability of methanol-to-olefins reaction catalyzed by SAPO-34 zeolite in the presence of CO2 and oxygen-vacancy-rich ZnCeZrO x[J]. ACS Catal,2024,14(2):594−607. doi: 10.1021/acscatal.3c04707
    [13] LIU C, USLAMIN E A, KHRAMENKOVA E, et al. High stability of methanol to aromatic conversion over bimetallic Ca, Ga-modified ZSM-5[J]. ACS Catal,2022,12(5):3189−3200. doi: 10.1021/acscatal.1c05481
    [14] Olah G A. After oil and gas: methanol economy[J]. Catal Lett,2004,93(1-2):1−2.
    [15] PANG J, ZHENG M, ZHANG T. Synthesis of ethanol and its catalytic conversion [M]. Adv catal, 2019: 89-191.
    [16] BAHRUJI H, BOWKER M, HUTCHINGS G, et al. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol[J]. J Catal,2016,343:133−146. doi: 10.1016/j.jcat.2016.03.017
    [17] BEHRENS M, STUDT F, KASATKIN I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science,2012,336(6083):893−897. doi: 10.1126/science.1219831
    [18] LOU Y, JIANG F, ZHU W, et al. CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol[J]. Appl Catal B:Environ,2021,291:120122. doi: 10.1016/j.apcatb.2021.120122
    [19] MONTINI T, MELCHIONNA M, MONAI M, et al. Fundamentals and catalytic applications of CeO2-based materials[J]. Chem Rev,2016,116(10):5987−6041. doi: 10.1021/acs.chemrev.5b00603
    [20] JIANG F, JIANG F, WANG S, et al. Catalytic activity for CO2 hydrogenation is linearly dependent on generated oxygen vacancies over CeO2‐supported Pd catalysts[J]. ChemCatChem,2022,14(16):e202200422. doi: 10.1002/cctc.202200422
    [21] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comp Mater Sci,1996,6(1):15−50. doi: 10.1016/0927-0256(96)00008-0
    [22] LIU B, LIU J, XIN L, et al. Unraveling reactivity descriptors and structure sensitivity in low-temperature NH3-SCR reaction over CeTiO x catalysts: a combined computational and experimental study[J]. ACS Catal,2021,11(13):7613−7636. doi: 10.1021/acscatal.1c00311
    [23] BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B,1994,50(24):17953−17979. doi: 10.1103/PhysRevB.50.17953
    [24] HENKELMAN G, JÓNSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. J Phys Chem,2000,113(22):9978−9985. doi: 10.1063/1.1323224
    [25] HENKELMAN G, UBERUAGA B P, JÓNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Phys Chem,2000,113(22):9901−9904. doi: 10.1063/1.1329672
    [26] HU Z, LIU X, MENG D, et al. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation[J]. ACS Catal,2016,6(4):2265−2279. doi: 10.1021/acscatal.5b02617
    [27] HUANG H, DAI Q, WANG X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Appl Catal B:Environ,2014,158-159:96−105. doi: 10.1016/j.apcatb.2014.01.062
    [28] SAKPAL T, LEFFERTS L. Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation[J]. J Catal,2018,367:171−180. doi: 10.1016/j.jcat.2018.08.027
    [29] LI X, QIN T, LI L, et al. One-pot synthesis of acetals by tandem hydroformylation-acetalization of olefins using heterogeneous supported catalysts[J]. Catal Lett,2021,151:2638−2646. doi: 10.1007/s10562-020-03504-5
    [30] LU X, WANG W, WEI S, et al. Initial reduction of CO2 on perfect and O-defective CeO2 (111) surfaces: towards CO or COOH?[J]. RSC Adv,2015,5(118):97528−97535. doi: 10.1039/C5RA17825H
    [31] MATSUBU J C, YANG V N, Christopher P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity[J]. J Am Chem Soc,2015,137(8):3076−3084. doi: 10.1021/ja5128133
    [32] YATES JR J, DUNCAN T, WORLEY S, et al. Infrared spectra of chemisorbed CO on Rh[J]. J Phys Chem,1979,70(3):1219−1224. doi: 10.1063/1.437603
    [33] HE H, DAI H, AU C. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE= Ce, Pr) solid solutions[J]. Catal Today,2004,90(3-4):245−254. doi: 10.1016/j.cattod.2004.04.033
    [34] ZHANG G, HAN W, DONG F, et al. One pot synthesis of a highly efficient mesoporous ceria–titanium catalyst for selective catalytic reduction of NO[J]. RSC Adv,2016,6(80):76556−76567. doi: 10.1039/C6RA17840E
    [35] CHEN Y, ZHANG H, MA H, et al. Direct conversion of syngas to ethanol over Rh–Fe/γ-Al2O3 catalyst: Promotion effect of Li[J]. Catal Lett,2018,148:691−698. doi: 10.1007/s10562-017-2202-6
    [36] KAWAI M, UDA M, ICHIKAWA M. The electronic state of supported rhodium catalysts and the selectivity for the hydrogenation of carbon monoxide[J]. J Phys Chem,1985,89(9):1654−1656. doi: 10.1021/j100255a020
    [37] ZHANG F, ZHOU W, XIONG X, et al. Selective hydrogenation of CO2 to ethanol over sodium-modified rhodium nanoparticles embedded in zeolite silicalite-1[J]. J Phys Chem C,2021,125(44):24429−24439. doi: 10.1021/acs.jpcc.1c07862
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  11
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-01
  • 修回日期:  2024-03-22
  • 录用日期:  2024-03-25
  • 网络出版日期:  2024-04-29

目录

    /

    返回文章
    返回