留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神华上湾煤在含CO气氛下的直接液化行为研究

唐博文 张瑞 刘海云 靳立军 胡浩权

唐博文, 张瑞, 刘海云, 靳立军, 胡浩权. 神华上湾煤在含CO气氛下的直接液化行为研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60451-2
引用本文: 唐博文, 张瑞, 刘海云, 靳立军, 胡浩权. 神华上湾煤在含CO气氛下的直接液化行为研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60451-2
TANG Bowen, ZHANG Rui, LIU Haiyun, JIN Lijun, HU Haoquan. Direct liquefaction behavior of Shenhua coal under CO containing atmosphere[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60451-2
Citation: TANG Bowen, ZHANG Rui, LIU Haiyun, JIN Lijun, HU Haoquan. Direct liquefaction behavior of Shenhua coal under CO containing atmosphere[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60451-2

神华上湾煤在含CO气氛下的直接液化行为研究

doi: 10.1016/S1872-5813(24)60451-2
基金项目: 中国神华煤制油化工有限公司揭榜挂帅项目(MZYHG-22-02)和国家重点研发计划项目(2022YFB4101302)资助.
详细信息
    通讯作者:

    Tel: 0411-84986157, E-mail: hhu@dlut.edu.cn.

  • 中图分类号: TK6

Direct liquefaction behavior of Shenhua coal under CO containing atmosphere

Funds: The project was supported by China Shenhua Coal to Liquid and Chemical Co, LTD (MZYHG-22-02), and National Key Research and Development Program of China (2022YFB4101302).
  • 摘要: 在CO或合成气气氛下进行煤直接液化有利于降低制氢成本。本文通过对比CO、H2、N2三种气氛下的液化行为,探究了CO对神华上湾煤液化过程的影响,并进一步研究不同CO/H2比以及催化剂对合成气条件下液化过程的影响。结果显示,在CO气氛下煤直接液化的油产率达到43.1%,比H2气氛中低4.2%,但比N2气氛下高10.2%,添加神华863催化剂后液化效果得到进一步的提升,表明CO在液化过程中可通过水煤气变换反应和CO与煤有机结构间的反应促进煤液化。对液化产物进行GC-MS、FI-TR等分析发现,CO使液化油中苯系物、脂肪烃与含氧化合物同时增多,对液化残渣中官能团与自由基浓度的影响不明显。在CO+H2合成气下的实验结果表明,在20%CO的合成气中煤液化具有最高的油产率,达到57.4%;适当提高煤的含水量能够提升液化效果;神华863催化剂对液化过程与水煤气变换反应均具有良好的催化作用。研究工作为煤在合成气下的直接液化提供理论基础。
  • 图  1  实验设备及产物分离流程示意图

    Figure  1  Schematic diagram of experimental equipment and product separation procedure

    图  2  不同气氛下催化与非催化液化的气液固产物产率和氢耗分布

    Figure  2  Product yields and hydrogen consumption distribution of catalytic and non-catalytic liquefaction under different atmospheres

    (a): Product yields; (b): Hydrogen consumption distribution.

    图  3  不同气氛下催化与非催化液化的水产率和CO消耗分布

    Figure  3  Water yield and CO consumption distribution of catalytic and non-catalytic liquefaction under different atmospheres

    (a): variation amount of water; (b): CO consumption distribution.

    图  4  不同气氛下液化油的GC-MS结果

    Figure  4  GC-MS results of liquefaction oil under different atmospheres

    图  5  不同气氛下煤液化产生的沥青烯和液化残渣的FT-IR谱图

    Figure  5  FT-IR spectra of asphaltene and liquefaction residue under different atmospheres

    (a): asphaltene; (b): liquefaction residue.

    图  6  不同气氛下煤液化产生的沥青烯和液化残渣的总自由基浓度和g

    Figure  6  Total radical concentrations and g value of asphaltene and liquefaction residue under different atmospheres

    (a): total radical concentrations; (b): g value.

    图  7  原煤以及不同反应条件下液化残渣的EPR谱图

    Figure  7  EPR spectra and fitted sub-curve of SW and its liquefaction residue under different reaction conditions

    图  8  不同CO/H2比例合成气气氛下的液化结果

    Figure  8  Liquefaction results under different CO/H2 ratios of syngas

    (a): product yields; (b): hydrogen consumption distribution; (c): CO consumption distribution; (d): CO and THN conversion.

    图  9  添加水量对上湾煤在20% CO合成气下液化的影响

    Figure  9  Effect of water addition on DCL

    (a): product yield; (b): gas consumption and XCO.

    图  10  催化剂对上湾煤在20%CO合成气下液化的影响

    Figure  10  Effect of catalyst on SW DCL

    (a): product yield; (b): gas consumption and XCO; (c): water yield.

    表  1  上湾煤及神华铁基催化剂工业分析和元素分析

    Table  1  Proximate and ultimate analyses of SW and iron-based catalyst

    Sample Proximate analysis/% Ultimate analysis/%, daf
    Mad Ad Vdaf C H N S O*
    SW 1.30 5.54 37.04 71.91 4.95 0.99 0.36 21.79
    Fe catalyst 3.96 13.12 37.40
    * by difference
    下载: 导出CSV

    表  2  不同实验条件下的CO2产率*

    Table  2  Yield of CO2 under different conditions

    RunCatalystAtmosphereYCO2 (mmol/g)
    1NoneN20.68
    2NoneN20.69
    3NoneH20.60
    4NoneH20.63
    51%FeN20.75
    61%FeN20.66
    71%FeH20.57
    81%FeH20.59
    * Experiments at same conditions except for the catalyst and atmosphere, each condition repeated twice.
    下载: 导出CSV

    表  3  原煤及不同气氛下液化反应后残渣的EPR谱图拟合结果

    Table  3  Fitted results of EPR spectra of SW and liquefaction residue under different atmospheres

    Sample Fitted curve g value Line width(Gauss) Line shape Radical concentration(spins/g×1018)
    SW Sub-curve-1 2.00513 9.20 G/L 5.09
    Sub-curve-2 2.00540 5.45 G/L 6.75
    N2 Sub-curve-1 2.00474 3.25 Gauss 12.17
    Sub-curve-2 2.00369 12.50 G/L 8.41
    Sub-curve-3 2.00467 6.84 Lorenz 7 .38
    N2-Fe Sub-curve-1 2.00476 2.92 Gauss 8.44
    Sub-curve-2 2.00408 11.10 G/L 10.56
    Sub-curve-3 2.00474 6.24 Lorenz 6.80
    H2 Sub-curve-1 2.00495 3.06 Gauss 7.87
    Sub-curve-2 2.00433 11.24 G/L 7.55
    Sub-curve-3 2.00490 6.27 Lorenz 4.54
    H2-Fe Sub-curve-1 2.00490 11.64 Gauss 6.92
    Sub-curve-2 2.00367 36.70 G/L 5.16
    Sub-curve-3 2.00478 6.80 Lorenz 4.09
    CO Sub-curve-1 2.00483 3.03 Gauss 10.09
    Sub-curve-2 2.00412 11.36 G/L 11.07
    Sub-curve-3 2.00479 6.37 Lorenz 7.47
    CO-Fe Sub-curve-1 2.00496 11.63 Gauss 8.41
    Sub-curve-2 2.00427 6.58 G/L 8.88
    Sub-curve-3 2.00493 25.36 Lorenz 5.69
    下载: 导出CSV

    表  4  不同充压比合成气的色谱测量值

    Table  4  Chromatographic measurements of reaction gas

    Syngas* Initial CO pressure
    (MPa)
    Measured volume
    fraction of gas
    (%)
    CO H2
    20% CO 1.2 25.16 74.84
    40% CO 2.4 44.55 55.45
    60% CO 3.6 63.27 36.73
    80% CO 4.8 80.85 19.15
    * Fill the reactor with CO at the specified pressure, and then fill the reactor pressure with H2 to 6 MPa
    下载: 导出CSV
  • [1] LIN B, XU B. How does fossil energy abundance affect China's economic growth and CO2 emissions ?[J]. Sci Total Environ,2020,719:137503. doi: 10.1016/j.scitotenv.2020.137503
    [2] 李鑫, 李臣威, 张海军, 等. 浅析我国褐煤应用现状及问题研究[J]. 应用化工,2020,49(5):1226−1230. doi: 10.3969/j.issn.1671-3206.2020.05.038

    LI Xin, LI Chenwei, ZHANG Haijun, et al. Analysis on the status and problems of lignite application in China[J]. Appl Chem Ind,2020,49(5):1226−1230. doi: 10.3969/j.issn.1671-3206.2020.05.038
    [3] ALI A, ZHAO C. Direct liquefaction techniques on lignite coal: A review[J]. Chin J Catal,2020,41(3):375−389. doi: 10.1016/S1872-2067(19)63492-3
    [4] 赵云鹏, 吴法鹏, 司兴刚, 等. 低阶煤催化加氢转化研究进展[J]. 煤炭学报,2021,46(4):1067−1079.

    ZHAO Yunpeng, WU Fapeng, SI Xinggang, et al. Advances in catalytic hydroconversion of low-rank coals[J]. J China Coal Soc,2021,46(4):1067−1079.
    [5] SUN Q, FLETCHER J J, ZHANG Y, et al. Comparative analysis of costs of alternative coal liquefaction processes[J]. Energy & fuels,2005,19(3):1160−1164.
    [6] LIU Z, SHI S, LI Y. Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering[J]. Chem Eng Sci,2010,65(1):12−17. doi: 10.1016/j.ces.2009.05.014
    [7] MIKNIS F P, NETZEL D A, TURNER T F. Effect of different drying methods on coal structure and reactivity toward liquefaction[J]. Fuel and Energy Abstracts,1996,37(5):333.
    [8] FISHER F, SCHRADER H. The origin and chemical structure of coal[J]. Brennstoff chem,1921,2:37−45.
    [9] SHUI H, LIU J, WANG Z, et al. Preliminary study on liquefaction properties of Xiaolongtan lignite under different atmospheres[J]. J Fuel Chem Technol,2009,37(3):257−261. doi: 10.1016/S1872-5813(09)60019-0
    [10] 徐熠. CO+H2O系统中褐煤直接液化的基础研究[D]. 上海: 华东理工大学, 2010.

    XU Yi. Initial Investigation of Coal Direct Liquefaction in the CO+H2O system[D]. Shanghai: East China University of Science and Technology, 2010.)
    [11] GUO Z, BAI Z, BAI J, et al. Co-liquefaction of lignite and sawdust under syngas[J]. Fuel Processing Technol,2011,92(1):119−125. doi: 10.1016/j.fuproc.2010.09.014
    [12] TAKEMURA Y, OUCHI K. Catalytic liquefaction of various coals using a mixture of carbon-monoxide and water[J]. Fuel,1983,62(10):1133−1137. doi: 10.1016/0016-2361(83)90052-2
    [13] OENSAN Z I. Catalytic processes for clean hydrogen production from hydrocarbons[J]. Turk J Chem,2007,31(5):531−550.
    [14] VASIREDDY S, MORREALE B, CUGINI A, et al. Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges[J]. Energy Environ Sci,2011,4(2):311−345. doi: 10.1039/C0EE00097C
    [15] SONDREAL E A, WILSON W G, STENBERG V I. Mechanisms leading to process improvements in lignite liquefaction using CO and H2S[J]. Fuel,1982,61(10):925−938. doi: 10.1016/0016-2361(82)90091-6
    [16] HODGES S, CREASY D E. The effect of alkali metal carbonate catalysts on the liquefaction of Victorian brown coal using carbon monoxide and steam[J]. Fuel,1985,64(9):1229−1234. doi: 10.1016/0016-2361(85)90180-2
    [17] LI H, PENG W, GU J, et al. Study on liquefaction characteristics of lignite in CO atmosphere[J]. J Anal Appl Pyrolysis,2023,172:105995. doi: 10.1016/j.jaap.2023.105995
    [18] 舒歌平, 李文博, 史士东, 等. 一种高分散铁基煤直接液化催化剂及其制备方法: CN1274415C [P]. 2006-09-13.

    SHU Geping, LI Wenbo, SHI Shidong, et al. A highly dispersed iron-based coal direct liquefaction catalyst and its preparation method: CN1274415C [P]. 2006-09-13.)
    [19] 王建友. 神华煤直接液化的催化加氢反应特性研究[D]. 大连: 大连理工大学, 2013.

    WANG Jianyou. Study on the Characteristics of Catalytic-hydrogenation in Direct Shenhua Coal Liquefaction[D]. Dalian: Dalian University of Technology, 2013.)
    [20] 牛犇. 煤直接液化中溶剂的作用及氢传递机理[D]. 大连: 大连理工大学, 2017.

    NIU Ben. Role of solvents and hydrogen transfer mechanism in direct coal liquefaction[D]. Dalian: Dalian University of Technology, 2017.)
    [21] MRAZIKOVA J, SINDLER S, VEVERKA L, et al. Evolution of organic oxygen bonds during pyrolysis of coal[J]. Fuel,1986,65(3):342−345. doi: 10.1016/0016-2361(86)90293-0
    [22] 钟金龙. 煤炭直接液化高压釜试验水产率的问题探讨[J]. 煤质技术,2016,(S1):41−42.

    ZHONG Jinlong. Discussion on water yield in direct coal liquefaction autoclave test[J]. Coal Quality Technology,2016,(S1):41−42.
    [23] 单贤根, 曹雪萍, 舒歌平, 等. 煤直接液化条件下萘-四氢萘加氢转化反应行为[J]. 煤炭转化,2020,43(5):61−68.

    SHAN Xiangen, CAO xueping, SHU Geping, et al. Hydroconversion behavior of naphthalene-tetrahydronaphthalene under direct coal liquefaction[J]. Coal Convers,2020,43(5):61−68.
    [24] LI H, WU S, WU Y, et al. A Preliminary investigation of CO effects on lignite liquefaction process[J]. Fuel,2018,221:417−424. doi: 10.1016/j.fuel.2018.02.079
    [25] ZHAO R, HUANG S, WU Y, et al. Comparative study of the catalytic performances of Na2CO3 and γ-FeOOH in hydroliquefaction to propose a two-stage lignite catalytic liquefaction process[J]. Energy & fuels,2019,33(11):10678−10686.
    [26] YAN J, BAI Z, BAI J, et al. Effects of organic solvent treatment on the chemical structure and pyrolysis reactivity of brown coal[J]. Fuel,2014,128:39−45. doi: 10.1016/j.fuel.2014.03.001
    [27] 熊言坤. 淖毛湖煤中有机质的结构研究[D]. 大连: 大连理工大学, 2020.

    XIONG Yankun. Structure investigation on organic matters of naomaohu coal[D]. Dalian: Dalian University of Technology, 2020.)
    [28] SISKIN M, KATRITZKY A R. Reactivity of organic compounds in hot water: geochemical and technological implications[J]. Science,1991,254(5029):231−237. doi: 10.1126/science.254.5029.231
    [29] 刘振宇. 煤直接液化技术发展的化学脉络及化学工程挑战[J]. 化工进展,2010,29(2):193−197.

    LIU Zhenyu. Principal chemistry and chemical engineering challenges in direct coal liquefaction technology[J]. Chem Ind Eng Prog,2010,29(2):193−197.
    [30] PETRAKIS L, GRANDY D W. Free-radicals in coals and coal conversion. 2. Effect of liquefaction processing conditions on the formation and quenching of coal free-radicals[J]. Fuel,1980,59(4):227−232. doi: 10.1016/0016-2361(80)90139-8
    [31] PETRAKIS L, GRANDY D W. Free-radicals in coal and coal conversions. 6. Effects of liquefaction process variables on the insitu observation of free-radicals[J]. Fuel,1981,60(11):1017−1021. doi: 10.1016/0016-2361(81)90042-9
    [32] PETRAKIS L, GRANDY D W, JONES G L. Free-radicals in coal and coal conversions. 7. An in-depth experimental investigation and statistical correlative model of the effects of residence time, temperature and solvents[J]. Fuel,1982,61(1):21−28. doi: 10.1016/0016-2361(82)90288-5
    [33] TRUBETSKAYA A, JENSEN P A, JENSEN A D, et al. Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures[J]. Biomass Bioenergy,2016,94:117−129. doi: 10.1016/j.biombioe.2016.08.020
    [34] VEJERANO E, LOMNICKI S, DELLINGER B. Formation and Stabilization of Combustion-Generated Environmentally Persistent Free Radicals on an Fe(III)2O3/Silica Surface[J]. Environ Sci Technol,2011,45(2):589−594. doi: 10.1021/es102841s
    [35] PETRAKIS L, GRANDY D W. Electron spin resonance spectrometric study of free radicals in coals[J]. Anal Chem (Washington),1978,50(2):303−308. doi: 10.1021/ac50024a034
    [36] SONG Y, BUETTNER G R. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide[J]. Free Radical Biol Med,2010,49(6):919−962. doi: 10.1016/j.freeradbiomed.2010.05.009
    [37] 盛清涛, 凌开成, 杜晋安. 氢气在煤液化反应中的作用[J]. 煤化工,2003,31(6):29−32. doi: 10.3969/j.issn.1005-9598.2003.06.008

    SHENG Qingtao, LING Kaicheng, DU Jinan. Effect of hydrogen in coal liquefaction[J]. Coal Chem Ind,2003,31(6):29−32. doi: 10.3969/j.issn.1005-9598.2003.06.008
    [38] 张银元, 赵景联. 煤直接液化技术的研究与开发[J]. 山西煤炭,2001,(2):32−36.

    ZHANG Yinyuan, ZHAO Jinglian. Research and development of direct coal liquefaction on technology[J]. Shanxi Coal,2001,(2):32−36.
    [39] HATA K, WATANABE Y, WADA K, et al. Iron sulfate sulfur-catalyzed liquefaction of Wandoan coal using syngas-water as a hydrogen source[J]. Fuel Processing Technol,1998,56(3):291−304. doi: 10.1016/S0378-3820(98)00058-7
    [40] ROSS D S, BLESSING J E. Hydroconversion of a bituminous coal with CO-H2O[J]. Fuel,1978,57(6):379−380. doi: 10.1016/0016-2361(78)90179-5
    [41] ROSS D S, NGUYEN Q. Coal conversion in aqueous systems[J]. Fluid Phase Equilib,1983,10(2-3):319−326. doi: 10.1016/0378-3812(83)80046-6
    [42] 倪双跃, 高晋生, 朱之培. 我国年轻煤加氢液化研究Ⅰ. 几种年轻煤液化性能的考察[J]. 燃料化学学报,1985,(4):334−342.

    NI Shuangyue, GAO Jinsheng, ZHU Zhipei. Investigation on the hydrogenation liquefaction of Chinese low-rank coals I. Examination on the liquefaction behaviour of some low-rank coals[J]. J Fuel Chem Technol,1985,(4):334−342.
    [43] 罗红梅, 曾桓兴. 纺锤型γ-FeOOH的合成及其热分析研究[J]. 中国科学技术大学学报,1995,(3):363−367.

    LUO Hongmei, ZENG Huanxing. Spindle-Type γ-FeOOH Crystallite Formation and Its Thermal Analysis[J]. J China Univ Sci Technol,1995,(3):363−367.
    [44] BARAJ E, CIAHOTNY K, HLINCIK T. The water gas shift reaction: Catalysts and reaction mechanism[J]. Fuel, 2021, 288.
    [45] LI L, HUANG S, WU S, et al. Roles of Na2CO3 in lignite hydroliquefaction with Fe-based catalyst[J]. Fuel Processing Technol,2015,138:109−115. doi: 10.1016/j.fuproc.2015.05.018
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-08
  • 修回日期:  2024-04-09
  • 录用日期:  2024-04-09
  • 网络出版日期:  2024-04-29

目录

    /

    返回文章
    返回