煤气化渣脱除燃煤烟气中汞的性能研究

Performance of Hg0 removal from coal-fired flue gas over coal gasification slag

  • 摘要: 汞作为一种重金属污染物,对环境和人体健康影响很大,如何对其高效脱除已引起了研究者的广泛关注。本研究使用煤气化渣及其分选后样品作为脱汞吸附剂,通过固定床和气流床脱汞实验考察了吸附剂的脱汞性能,利用N2吸附-脱附、X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)等表征手段分析了吸附剂的物化特性。固定床脱汞评价结果显示,OS和HCS在60−120 ℃保持91%以上的脱汞效率;HAS在60 ℃有最高97%的脱汞效率,HAS的脱汞活性受脱汞温度影响较大。Hg-TPD和XPS表征结果表明,吸附剂中的化学吸附氧参与了汞的氧化,在吸附剂表面生成HgO。气流床脱汞评价结果表明,OS和HCS在碳汞比为40000,脱汞温度为60 ℃时,脱汞效率分别为56%、57%;当碳汞比为80000,脱汞温度为60 ℃时,脱汞效率分别为100%、82%。

     

    Abstract: Mercury (Hg), a kind of heavy metal pollutant, has a great impact on the environment and human health. The highly efficient technology for Hg removal has attracted widespread attention from researchers. In this study, the coal gasification slag (CGS) and the slag after sorting were used as sorbents, and the Hg0 removal performance of the sorbents were investigated through the fixed-bed reactor and entrained flow reactor. The characterization methods such as N2 adsorption-desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) were performed to analyze the physical and chemical characteristics of the sorbents. According to the results of fixed-bed Hg0 removal experiment, the Hg0 removal efficiency of the origin slag (OS) and high carbon slag (HCS) could maintain more than 91% at 60−120 ℃. The high ash slag (HAS) showed the highest Hg0 removal efficiency of 97% at 60 ℃, which was greatly affected by the Hg0 removal temperature. The Hg-TPD (Hg-temperature program desorption) and XPS results indicated that the chemisorbed oxygen on the sorbent participated in the Hg0 oxidation process with HgO formed on the surface of the sorbent. According to the results of entrained flow Hg0 removal experiments, the Hg0 removal efficiencies of OS and HCS were 56% and 57% at C/Hg ratio of 40000 and the Hg0 removal temperature of 60 ℃, respectively. When the C/Hg ratio was 80000 and the Hg0 removal temperature was 60 ℃, the Hg0 removal efficiencies of OS and HCS were 100% and 82%, respectively.

     

/

返回文章
返回