Abstract:
The size distribution of aromatic nuclei in coal influences the composition of tar and char during pyrolysis. Pyrolytic experiments of Naomaohu (NMH) coal from Xinjiang in China were carried out in a fixed-bed reactor at different temperatures to study the size distribution of aromatic nuclei during coal pyrolysis. With the increase of pyrolysis temperature, the aromaticity of char, the graphitization degree, and the order degree of aromatic layers increase. The tar is mainly composed of aromatic clusters with 1−2 rings and contains a small amount of aromatic clusters with 3 or more rings. The tar yield increases first and then decreases with increasing temperature (maximum at 550 ℃). However, the changes in the synchronous fluorescence spectra of the tars with increasing temperature are not significant, indicating that the size distribution of aromatic nuclei in tar changes little with no significant condensation polymerization, and also indicating that the number of bridged bonds and the cracking activity distribution of these bridge chains in different size aromatic rings are relatively uniform. With the increase of pyrolysis temperature, the content of 1 × 1 aromatic layers in the pyrolysis products (char and tar) decreases gradually. When the pyrolysis temperature is at between 500 and 600 ℃, the 1 × 1 aromatic layers are mainly transformed into 2 × 2 and 3 × 3 aromatic layers. When the temperature is higher than 650 ℃, the formation of aromatic layers with the size of 4 × 4 and above takes the main part of condensation polymerization.