粒径及加热速率对烟煤膨胀特性的影响

粒径及加热速率对烟煤膨胀特性的影响

  • 摘要: 将不同粒径烟煤在实验室沉降炉中进行了不同加热速率下的热解实验,研究了煤粉粒径及其加热速率对煤粒膨胀特性的影响。实验结果表明,煤粒在热解过程中发生了明显的膨胀,形成了具有中空结构的煤胞型焦炭,这是煤中较高镜质组体积分数造成的。在相同加热速率下,随粒径减小煤粉颗粒膨胀越剧烈,随粒径增大煤粒膨胀程度之间的差异有减小的趋势。煤样不同膨胀特性是镜质组体积分数不同的结果。镜质组体积分数越高,在热解过程中更容易软化、变形,发生剧烈膨胀。当加热速率从0.5×104K/s升高到4×104K/s时,煤样膨胀程度先增加后减小,表明在0.5×104K/s~4×104K/s,存在一个最佳的加热速率,此时煤粒膨胀程度最高。

     

    Abstract: A sizeclassified bituminous coal was pyrolyzed in a laboratory drop tube furnace at different heating rates. The effects of coal particle size and heating rate on particle swelling properties were investigated. The results show that coal particles undergo obvious swelling during pyrolysis, leading to the formation of a large number of char cenospheres with a large central void surrounded by a thin shell. Analyses indicate this is caused by high concentrations of vitrinite present in coal samples. At the same heating rate, the extent of swelling increases with decreasing particle size and the difference in swelling decreases with increasing particle size. Since finer coal samples contain higher content of vitrinite, the observed phenomena are considered to be the result of the different content of vitrinite in these samples. The reason is that coal particles containing more vitrinite easily undergo a softening and deformation stage and swell significantly during pyrolysis. When the heating rate increases from 0.5×104K/s to 4×104K/s, the swelling of coal particles in the same size range firstly increases and then decreases, which implies that an optimum heating rate at which coal particles swell most must exist between 0.5×104K/s and 4×104K/s. Reasonable explanations for this effect of heating rate on particle swelling are provided in the present study.

     

/

返回文章
返回