磷化镍催化剂的制备机理及其加氢脱氮性能

Preparation mechanism and hydrodenitrogenation performance of nickel phosphide catalyst

  • 摘要: 采用热重-质谱联用技术研究了次磷酸盐在氮气中的热分解过程,探讨了次磷酸盐热分解法制备磷化镍的反应机理:次磷酸镍中的Ni2+能够"催化"H2PO2-低温发生歧化反应生成PH3,继而还原Ni2+得到Ni2P。制备了不同负载量的Ni2P/SiO2催化剂,用X射线衍射(XRD)、低温N2吸附-脱附、高分辨透射电镜(HRTEM)等分析技术对催化剂结构进行表征。结果表明,Ni2P活性组分在SiO2载体上具有良好的分散性,颗粒粒径为5~8 nm。以喹啉为加氢脱氮模型化合物,在高压微型固定床反应器上对催化剂活性进行评价,在反应温度为360℃、氢气压力为2.0 MPa、液时空速为2.0 h-1、氢油体积比为500:1时,Ni2P(20%)/SiO2催化剂的加氢脱氮率为41.5%。

     

    Abstract: Thermal decomposition of nickel hypophosphite precursor into nickel phosphide (Ni2P) was studied using thermogravimetry-mass spectrometry analysis. The results indicated that nickel ion (Ni2+) influenced the decomposition pathway of hypophosphite, because it might catalyze the reaction of hypophosphite to produce PH3 at lower temperature. Silica-supported Ni2P catalysts with different loadings were prepared and characterized using X-ray diffraction, N2 adsorption-desorption, and high resolution transmission electron microscopy. It was indicated that Ni2P was well dispersed on the support with a particle size of 5~8 nm. The catalytic performance of as-prepared catalysts was evaluated in a fixed-bed reactor for hydrodenitrogenation of quinoline. Under the reaction temperature of 360℃, hydrogen pressure of 2.0 MPa, LHSV of 2.0 h-1, and H2/oil volume ratio of 500:1, the conversion of quinoline over Ni2P(20%)/SiO2 catalyst reached 41.5%.

     

/

返回文章
返回