不同改性组分对Cu-ZnO基催化剂低温甲醇合成性能的影响

Effect of modifiers on the performance of Cu-ZnO-based catalysts for low-temperature methanol synthesis

  • 摘要: 通过共沉淀法制备了Al、Zr和Ce改性的Cu-ZnO基低温甲醇合成催化剂,采用氮气物理吸附、H2-TPR、CO2-TPD、N2O滴定、XRD和TEM等技术对其进行了表征,并考察了改性组分和煅烧温度对其在170 ℃下合成气制甲醇催化性能的影响。结果表明,经Zr改性的Cu-ZnO基催化剂,其低温甲醇合成性能较好;随着煅烧温度的降低,Cu在催化剂表面的分散度逐渐变大、颗粒逐渐变小,所得到的催化剂其活性也较高;其中,未经煅烧的Cu-ZnO/ZrO2催化剂的活性最佳,其甲醇时空产率为106.02 g/(kg·h),选择性达87.04%。

     

    Abstract: A series of Cu-ZnO-based catalysts modified with Al, Zr, and Ce for the low-temperature methanol synthesis were prepared through co-precipitation and characterized by N2 sorption, H2-TPR, CO2-TPD, N2O titration, XRD, and high-resolution TEM; the effect of various modifiers and calcination temperature on their catalytic performance in methanol synthesis at 170 ℃ was investigated. The results showed that the Cu-ZnO-based catalyst modified with ZrO2, among the various modifiers, exhibits the highest activity. Meanwhile, a lower calcination temperature is propitious to get a higher Cu dispersion, a smaller Cu crystal size, and a higher low temperature activity for methanol synthesis; as a result, the uncalcined catalyst exhibits excellent catalytic performance, with a productivity of 106.02 g/(kg·h) and a selectivity of 87.04% to methanol.

     

/

返回文章
返回