镍磷物质的量比对负载型Ni2P/MCM-41催化剂结构及加氢脱硫性能的影响

Effect of Ni/P mol ratio on structure and performance of hydrodesulfurization of Ni2P/MCM-41 catalyst

  • 摘要: 以MCM-41为载体,采用一种简捷、温和法制备了负载型Ni2P/MCM-41催化剂。用H2程序升温还原(H2-TPR)、X射线衍射(XRD)、N2吸附比表面积测定(BET)和X射线光电子能谱(XPS)分析对催化剂进行了表征。以1%(质量分数)二苯并噻吩(DBT)的十氢萘溶液为原料,在连续固定床反应装置上,研究了初始Ni/P物质的量比对催化剂HDS活性的影响,并考察了催化剂的稳定性。结果表明,初始Ni/P物质的量比为1/2和1/3的前驱体,在390 ℃下还原时得到单一的Ni2P相。初始Ni/P物质的量为1/2时,得到的催化剂活性最好。在反应温度340 ℃、压力3.0 MPa、氢/油体积比500、质量空速2.0 h-1时,DBT的转化率接近100%。

     

    Abstract: This paper introduces a simple and mild route to prepare Ni2P catalysts. Ni2P/MCM-41 catalysts were successfully prepared using MCM-41 as the support. The catalysts were characterized by H2 temperature program reduction (H2-TPR), X-ray diffraction (XRD), N2-adsorption specific surface area measurements (BET), and X-ray photoelectron spectroscopy (XPS) analysis. The effects of initial Ni/P molar ratio on hydrodesulfurization (HDS) performance of catalysts and catalyst stability were studied with a lab-scale continuous flow type fixed-bed reactor systemusing a feed containing 1% dibenzothiophene (DBT) in decahydronaphthalene. The results indicated that a pure Ni2P phase was obtained when the initial Ni/P molar ratios were 1/2 and 1/3. The catalyst prepared with initial Ni/P mol ratios of 1/2 exhibited the highest activity. At a reaction temperature of 340 ℃, a pressure of 3.0 MPa, a H2/oil volume ratio of 500, and a weight hourly space velocity (WHSV) of 2.0 h-1, the HDS conversion was close to 100%.

     

/

返回文章
返回