Abstract:
HY zeolite obtained from NH
4Y was characterized by N
2 physisorption, NH
3-TPD, and in-situ Py-FTIR. The adsorption, desorption, and conversion of methylthiophene on the HY zeolite was investigated by using the intelligent gravimetric analysis (IGA) and temperature programmed desorption-mass spectrum (TPD-MS). The results indicated that 2-methylthiophene and 3-methylthiophene are strongly chemisorbed on the strong Brnsted acid sites of HY zeolite, which promote the disproportionation, dealkylation and cracking reactions at 200 ℃. Compared with 2-methylthiophene, 3-methylthiophene is prone to crack and form 3-methyltetrahydrothiophene via the hydrogen transfer reactions.