制备方法对添加钇(Y)的非负载型Ni2P催化剂的影响

Effect of preparation method on the HDS performance of unsupported Y-Ni2P catalysts

  • 摘要: 采用程序升温还原(T)法和低温次磷酸盐法(L)制备了Y-Ni2P-T和Y-Ni2P-L催化剂,并采用XRD、BET、CO吸附、XPS等手段对催化剂进行了表征。以二苯并噻吩(DBT)为模型化合物,研究了稀土Y对不同方法制备得到的催化剂加氢脱硫(HDS)性能的影响。结果表明,对T法制备的催化剂,添加稀土Y可以抑制Ni5P4杂晶的生成,从而促进活性相Ni2P的生成;添加稀土Y能显著提高催化剂的比表面积,促进小粒径、高度分散的Ni2P晶粒的生成。Y-Ni2P-T催化剂的DBT转化率达到91.0%,比Ni2P-T催化剂提高了29%。对L法制备的催化剂,添加稀土Y能抑制其他杂晶的生成,提高了Y-Ni2P-L催化剂对联苯(BP)的选择性,但催化剂的总HDS活性比Ni2P-L催化剂略有降低。

     

    Abstract: The Y-Ni2P-T and Y-Ni2P-L were successfully prepared by temperature programmed reduction method (T) and low temperature hypophosphite method (L), respectively. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorption specific surface area measurements (BET), CO uptake, and X-ray photoelectron spectroscopy (XPS). The effect of the rare earth yttrium (Y) on the HDS activity of catalysts prepared by different method was investigated using dibenzothiophene (DBT) as the model compound. The results show that for catalyst prepared by T method, the addition of Y can suppress the formation of the Ni5P4 phase and thus promote the formation of the active Ni2P phase. The addition of Y can dramatically increase the surface area and promote the formation of smaller and highly dispersed Ni2P particles. The DBT conversion of Y-Ni2P-T catalyst reached 91.0%, which is 29% higher than that of bulk Ni2P-T. For catalyst prepared by L method, the addition of Y can suppress the formation of the other impure phases. And the selectivity to BP over Y-Ni2P-T catalyst is improved, however, the total HDS activity of the catalyst decreases slightly compared with that of Ni2P-L.

     

/

返回文章
返回