磷对泥/煤混燃灰熔融特性的影响及矿物相演变规律

Effect of phosphorus on ash fusion characteristics and mineral transformation during co-combustion of sewage sludge and coal

  • 摘要: 采用灰熔点仪、X射线荧光仪(XRF)研究了无机非金属P2O5对城市污水污泥与烟煤的混烧灰熔融特性的影响,利用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)研究在各混烧温度下灰中含磷矿物在晶体和非晶体间的演变。结果表明,对于Al2O3含量较多且熔点较高的灰样,磷含量的增加可显著降低其灰熔点,P2O5含量在0-4%时影响最大,使其灰熔点降低126℃;但对碱性含量高的灰样的影响较小。低温灰中主要以磷酸铝(AlPO4)晶体为主,温度升高后,与硬石膏(CaSO4)等含钙矿物和赤铁矿(Fe2O3)反应生成晶体Ca3(PO42和玻璃相(Fe2O30.252(P2O50.748,磷含量增加可使灰中玻璃相(Fe2O30.252(P2O50.748增加,是磷降低灰熔点的主要原因。

     

    Abstract: The influence of inorganic phosphorus on ash fusion characteristics of sewage sludge and coal were investigated by ash fusion temperature (AFT) detector and X-ray fluorescence (XRF), and the transformation of containing phosphate minerals of blended ashes with different temperatures between crystal and amorphous were explored using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). For the ash sample with high contents of Al2O3, which has higher AFT, raising content of phosphorus significantly results in a reduced ash fusion point, in particular it is lowered by 126℃ at 0-4% P2O5 content. But it has little effect on ash with high alkaline content. Aluminum phosphate (AlPO4) crystals is the major phosphor containing minerals in low temperature ashes, witch react with calcium minerals (CaSO4) and hematite (Fe2O3) to form Ca3(PO4)2 crystal and (Fe2O3)0.252(P2O5)0.748 glass phase along with increasing temperature. Meanwhile, (Fe2O3)0.252(P2O5)0.748 in glass phase increases with an increase in phosphorus content, which may be the primary cause of AFT decreasing.

     

/

返回文章
返回