Ag对Fe/Al-PILC的SCR-C3H6脱硝特性的影响

Effect of Ag on deNOx performance of SCR-C3H6 over Fe/Al-PILC catalysts

  • 摘要: 为提高低温段(< 300℃)铝柱撑蒙脱土负载铁基催化剂的脱硝效率,采用银离子对其进行修饰。通过超声浸渍法合成银-铁双金属催化剂,并于固定床反应器中评价催化剂性能。结果表明,Ag的引入显著改善了Fe/Al-PILC催化剂的低温催化活性。在250℃时,Ag-Fe/Al-PILC催化剂的NO转化率达到60%以上,高于Fe/Al-PILC催化剂20%的NO的转化率,其中,2.1Ag-Fe/Al-PILC在250℃时NO转化率达到82%,N2选择性达到100%。而且,引入银离子后的双金属催化剂保持了铁基催化剂较好的抗H2O和SO2性能。通过多种技术探究催化剂的微观结构和物理化学性质。根据N2吸附-脱附测试结果表明,双金属催化剂形成了稳定的整体结构,并具有较大的内比表面积。同时,XRD和UV-vis表征结果显示,在催化剂表面形成的银-铁固溶体、Ag+和Agnδ+物种是影响其低温活性的关键因素。Ag-Fe/Al-PILC的低温活性与形成的银-铁固溶体有关,同时在催化剂表面形成的Ag+和Agnδ+物种是影响其低温活性的关键因素。XPS结果表明,Ag和Fe之间存在电子转移,形成了双金属协同作用,改变了催化剂表面的银、铁成分含量及其价态。H2-TPR结果表明,Ag促使Fe/Al-PILC还原特征峰出现在低温区,提高了其低温还原性能。表面酸性的Py-FTIR分析结果表明,Ag-Fe/Al-PILC催化剂同时存在Lewis酸和Brønsted酸,且Ag提高了Brønsted酸的稳定性。

     

    Abstract: Silver has been widely used to modify the iron-based catalyst supported on alumina pillared montmorillonite to enhance its activity at lower temperature (< 300℃). Bimetallic Ag-Fe/Al-PILC (Pillared interlayer clay) was prepared by the ultrasonic impregnation method and performance was tested on a fixed bed reactor. And the experiment results showed that silver obviously improved the catalyst activity at a lower temperature. The NO conversion efficiency of Ag-Fe/Al-PILC at 250℃ was 60%, which was higher than Fe/Al-PILC (20%). The maximum 82% NO conversion and 100% N2 selectivity were obtained by 2.1Ag-Fe/Al-PILC at 250℃. Moreover, Ag-Fe/Al-PILC revealed better anti-hydrogen peroxide and anti-sulfur dioxide ability. The catalyst characterization was conducted by several techniques with respect to the microstructure and physicochemical properties. According to the effects of N2-adsorption and desorption tests, Ag-Fe/Al-PILC formed a stable overall structure and had a large internal specific surface area. Besides, XRD and UV-vis proved that the Ag-Fe solid solution, Ag+ and Agnδ+ species formed on the surface of the catalyst are the key factors affecting its low-temperature activity. XPS results suggested that there was electron transfer between Ag and Fe, which formed a synergistic effect of bimetals and changed the content of Ag and Fe and their valence state on the catalyst surface. The findings of H2-TPR indicated that the modification of Ag promoted the shift of the Fe/Al-PILC reduction peak toward low temperature, which boosted the low-temperature reduction capacity of the catalyst. The surface acidity analysis by Py-FTIR indicated that Lewis acid and Brønsted acid existed simultaneously and Ag enhanced the stability of Brønsted acid.

     

/

返回文章
返回