Abstract:
Based on the reducing gases (H
2 and CO) generated from biomass-based carbon at high clacination temperature, self-reducing bifunctional catalyst Ni-W/MOR was prepared by incipient impregnation. This series of catalysts were directly applied to cellulose hydrogenolysis to low carbon polyols in aqueous solution, omitting the catalysts reduction step. The effects of catalysts temperature of the catalyst and weight ratio of active components on conversion of cellulose and yield of target products were investigated. The optimal calcination temperature was 773 K through experimental results. XRD analysis showed that the crystallinity and species of metallic alloys were related to different weight ratios of nickel and tungsten. It was intuitively observed that the active metals showed good dispersion on the surface of MOR through TEM characterization, with particles sizes less than 20 nm. The total yield of low carbon polyols was up to 56.92%, including 52.30% of EG under the reaction condition of 5.0 MPa of H
2 for 2 h reaction time and the calcination temperature of catalysts was 773 K.